Interpolating real polynomials

Joaquim Ortega-Cerdà

Universitat de Barcelona, BGSMath
Providence, June 6, 2018

Interpolating sequences

Let X be a set and H a reproducing kernel Hilbert space of real functions defined on X, i.e. for all $x \in X$, there is a $K_{x} \in H$ such that

$$
f(x)=\left\langle f, K_{x}\right\rangle
$$

We normalize the reproducing kernel and denote $\kappa_{X}=K_{x} /\left\|K_{x}\right\|$.

Interpolating sequences

Let X be a set and H a reproducing kernel Hilbert space of real functions defined on X, i.e. for all $x \in X$, there is a $K_{x} \in H$ such that

$$
f(x)=\left\langle f, K_{x}\right\rangle
$$

We normalize the reproducing kernel and denote
$\kappa_{X}=K_{x} /\left\|K_{x}\right\|$.

Definition

A sequence $\Lambda \subset X$ is an interpolating sequence for H whenever

$$
\sum_{\lambda \in \Lambda}\left|c_{\lambda}\right|^{2} \simeq\left\|\sum_{\lambda \in \Lambda} c_{\lambda} \kappa_{\lambda}\right\|^{2}
$$

Riesz sequences and Interpolating sequences in PW

Let $\Lambda \subset \mathbb{R}$, then

Definition

A sequence of functions $\left\{f_{\lambda}(z)=\frac{\sin \pi(z-\lambda)}{\pi(z-\lambda)}\right\}_{\lambda \in \Lambda}$ is a Riesz sequence for the Paley Wiener space whenever,

$$
\sum_{\lambda \in \Lambda}\left|c_{\lambda}\right|^{2} \lesssim\left|\sum_{\lambda \in \Lambda} c_{\lambda} f_{\lambda}\right|^{2} \lesssim \sum_{\lambda \in \Lambda}\left|c_{\lambda}\right|^{2}
$$

This implies that Λ is uniformly separated.

The density of a interpolating sequences

There is a density that almost describes interpolating sequences

Definition

The upper Beurling-Landau density of a sequence $\Lambda \subset \mathbb{R}$ is

$$
D^{+}(\Lambda)=\lim _{r \rightarrow \infty} \sup _{x \in \mathbb{R}} \frac{\#\{\Lambda \cap(x-r, x+r)\}}{2 r}
$$

The density of a interpolating sequences

There is a density that almost describes interpolating sequences

Definition

The upper Beurling-Landau density of a sequence $\Lambda \subset \mathbb{R}$ is

$$
D^{+}(\Lambda)=\lim _{r \rightarrow \infty} \sup _{x \in \mathbb{R}} \frac{\#\{\Lambda \cap(x-r, x+r)\}}{2 r}
$$

Theorem (Beurling)

A separated sequence $\Lambda \subset \mathbb{R}$ is interpolating for $P W$ if $D^{+}(\Lambda)<1$. Moreover if Λ is interpolating then $D^{+}(\Lambda) \leq 1$.

Our setting

Let Ω be a smooth bounded strictly convex domain in \mathbb{R}^{d}.

Our setting

Let Ω be a smooth bounded strictly convex domain in \mathbb{R}^{d}. Let \mathcal{P}_{n} be the real polynomials of degree n.

Our setting

Let Ω be a smooth bounded strictly convex domain in \mathbb{R}^{d}.
Let \mathcal{P}_{n} be the real polynomials of degree n.
Let $d V$ be the normalized Lebesgue measure restricted to Ω.
We denote by $N_{n}=\operatorname{dim}\left(\mathcal{P}_{n}\right)$.

Our setting

Let Ω be a smooth bounded strictly convex domain in \mathbb{R}^{d}.
Let \mathcal{P}_{n} be the real polynomials of degree n.
Let $d V$ be the normalized Lebesgue measure restricted to Ω.
We denote by $N_{n}=\operatorname{dim}\left(\mathcal{P}_{n}\right)$.
We endow \mathcal{P}_{n} with the norm given by $L^{2}(V)$.

$$
\|p\|^{2}=\int_{\Omega}|f(x)|^{2} d V(x)
$$

Interpolating sequences

Let $\Lambda=\left\{\Lambda_{n}\right\}_{n} \subset \Omega$ be a sequence of finite sets of points of $\Omega \subset \mathbb{R}^{d}$.

Definition

We say that Λ is an interpolating sequence if there is a constant $C>0$ such that

$$
C^{-1} \sum_{\lambda \in \Lambda_{n}}\left|c_{\lambda}\right|^{2} \leq\left|\sum_{\lambda \in \Lambda} c_{\lambda} \kappa_{\lambda}^{n}\right|^{2} \leq C \sum_{\lambda \in \Lambda_{n}}\left|c_{\lambda}\right|^{2}
$$

were κ_{λ}^{n} is the normalized reproducing kernel.
We are interested in the geometric distribution of points in Λ.

Alternative definition

Λ is an interpolating is equivalent to the two following properties.

$$
\sum_{\lambda \in \Lambda_{n}} \frac{|p(\lambda)|^{2}}{K_{n}(\lambda, \lambda)} \leq C\|p\|^{2}, \quad \forall p \in \mathcal{P}_{n}
$$

and for any sequence of sets of values $\left\{v_{\lambda}\right\}_{\lambda \in \Lambda_{v}}$ there are polynomials $p_{n} \in \mathcal{P}_{n}$ such that $p_{n}(\lambda)=v_{\lambda}$ with

$$
\left\|p_{n}\right\|^{2} \leq C \sum_{\lambda \in \Lambda_{n}} \frac{\left|v_{\lambda}\right|^{2}}{K_{n}(\lambda, \lambda)}
$$

The "natural" normalization

The natural normalization is

$$
c_{\lambda, n}=\sup _{p \in \mathcal{P}_{n},\|p\|=1}|p(\lambda)|^{2}
$$

The "natural" normalization

The natural normalization is

$$
c_{\lambda, n}=\sup _{p \in \mathcal{P}_{n},\|p\|=1}|p(\lambda)|^{2}
$$

This can be computed as follows. Take $p_{1}, \ldots, p_{N_{n}}$ an orthonormal basis of \mathcal{P}_{n} and construct:

$$
K_{n}(z, w)=\sum_{j} p_{j}(z) p_{j}(w)
$$

The "natural" normalization

The natural normalization is

$$
c_{\lambda, n}=\sup _{p \in \mathcal{P}_{n},\|p\|=1}|p(\lambda)|^{2} .
$$

This can be computed as follows. Take $p_{1}, \ldots, p_{N_{n}}$ an orthonormal basis of \mathcal{P}_{n} and construct:

$$
\begin{gathered}
K_{n}(z, w)=\sum_{j} p_{j}(z) p_{j}(w) \\
c_{\lambda, n}=K_{n}(\lambda, \lambda) \simeq \min \left(\frac{n^{d}}{\sqrt{d(\lambda)}}, n^{d+1}\right) .
\end{gathered}
$$

The "natural" normalization

The natural normalization is

$$
c_{\lambda, n}=\sup _{p \in \mathcal{P}_{n},\|p\|=1}|p(\lambda)|^{2}
$$

This can be computed as follows. Take $p_{1}, \ldots, p_{N_{n}}$ an orthonormal basis of \mathcal{P}_{n} and construct:

$$
\begin{gathered}
K_{n}(z, w)=\sum_{j} p_{j}(z) p_{j}(w) \\
c_{\lambda, n}=K_{n}(\lambda, \lambda) \simeq \min \left(\frac{n^{d}}{\sqrt{d(\lambda)}}, n^{d+1}\right) .
\end{gathered}
$$

Moreover K_{n} is the reproducing kernel:

$$
p(z)=\int_{\Omega} K_{n}(z, w) p(w) d V(w), \quad \forall p \in \mathcal{P}_{n}
$$

Carleson mesures

The Plancherel-Polya sequences are a particular case of Carleson measures.

Definition

A sequence of measures in Ω, μ_{k} is Carleson if there is a constant $C>0$ such that

$$
\int_{\Omega}|p|^{2} d \mu_{k} \leq C\|p\|^{2}, \quad \forall p \in \mathcal{P}_{k}
$$

We have a geometric characterization of Carleson measures.

An anisotropic metric

In the ball there is an anisotpric distance given by

$$
d(x, y)=\arccos \left\{\langle x, y\rangle+\sqrt{1-|x|^{2}}+\sqrt{1-|y|^{2}}\right\} .
$$

This is the geodesic distance of the points in the sphere S^{d} defined as $x^{\prime}=\left(x, \sqrt{1-|x|^{2}}\right)$ and $y^{\prime}=\left(x, \sqrt{1-|x|^{2}}\right)$.

An anisotropic metric

In the ball there is an anisotpric distance given by

$$
d(x, y)=\arccos \left\{\langle x, y\rangle+\sqrt{1-|x|^{2}}+\sqrt{1-|y|^{2}}\right\} .
$$

This is the geodesic distance of the points in the sphere S^{d} defined as $x^{\prime}=\left(x, \sqrt{1-|x|^{2}}\right)$ and $y^{\prime}=\left(x, \sqrt{1-|x|^{2}}\right)$. If we consider balls $B(x, r)$ in this distance they are comparable to a box (a product of intervals) which is of size R in the tangent directions and $R^{2}+R \sqrt{1-|x|^{2}}$ in the normal direction.

Geometric characterization

The geometric characterization of the Carleson measures is the following:

Theorem

Let Ω be a ball. A sequence of measures μ_{n} is Carleson if there is a constant C such that for all points $z \in \Omega$

$$
\mu_{n}(B(z, 1 / n)) \leq C V(B(z, 1 / n))
$$

Bochner-Riesz type kernels

Proof.

The main ingredient in the proof is the existence of well localized kernels (the needlets of Petrushev and Xu), i.e. kernels $L_{n}(x, y)$ such that for an arbitrary k there is a constant C_{k} such that:

$$
\left|L_{n}(x, y)\right| \leq C_{k} \frac{\sqrt{K_{n}(x, x) K_{n}(y, y)}}{(1+n d(x, y))^{k}}
$$

and moreover $L_{n}(x, x) \simeq K_{n}(x, x)$ and $L_{n} \in \mathcal{P}_{2 n}$ and reproduce the polynomials of degree n.

The Nyquist density

We try to identify which is the critical density. We will use the following result:

Theorem (Berman, Boucksom, Witt-Nyström)
If μ is a Bernstein-Markov measure then

$$
\frac{K_{n}(x, x) d \mu(x)}{N_{n}} \stackrel{*}{\rightharpoonup} \mu^{e q} .
$$

The Bernstein-Markov condition is technical and it is satisfied when $\mu=\chi_{\Omega} d V$. The measure $\mu^{e q}$ is the equilibrium measure.

The equilibrium potential

Definition

Given a compact $K=\bar{\Omega} \subset \mathbb{R}^{d}$ and any $z \in \mathbb{C}^{d}$ one defines the Siciak-Zaharjuta equilibrium potential as

$$
u_{K}(z)=\sup \left\{\frac{\log |p(z)|}{\operatorname{deg}(p)}: \sup _{K}|p| \leq 1\right\}
$$

The equilibrium potential

Definition

Given a compact $K=\bar{\Omega} \subset \mathbb{R}^{d}$ and any $z \in \mathbb{C}^{d}$ one defines the Siciak-Zaharjuta equilibrium potential as

$$
u_{K}(z)=\sup \left\{\frac{\log |p(z)|}{\operatorname{deg}(p)}: \sup _{K}|p| \leq 1\right\} .
$$

Then the equilibrium measure is defined as the Monge-Ampere of u_{K}

$$
\mu^{e q}=\left(i \partial \bar{\partial} u_{K}\right)^{d}
$$

The equilibrium measure is a positive measure supported on K.

What does $\mu^{e q}$ look like?

The measure $\mu^{e q}$ is a well-known object in pluripotential theory. In the examples we mentioned before it is well understood.
Theorem (Bedford-Taylor)
If Ω is an open bounded convex set in \mathbb{R}^{d} then

$$
d \mu^{e q}(x) \simeq d_{\text {euc }}(x, \partial \Omega)^{-1 / 2} d V(x) .
$$

Main result

Theorem

If \wedge is an interpolating sequence for the polynomials in a bounded smooth strictly convex domain then

$$
\limsup _{n \rightarrow \infty} \frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \delta_{\lambda} \leq \mu^{e q}
$$

Main result

Theorem

If \wedge is an interpolating sequence for the polynomials in a bounded smooth strictly convex domain then

$$
\limsup _{n \rightarrow \infty} \frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \delta_{\lambda} \leq \mu^{e q}
$$

In particular, given any ball B in Ω we have

$$
\limsup _{n \rightarrow \infty} \frac{\#\left(\Lambda_{n} \cap B\right)}{N_{n}} \leq \mu^{e q}(B)
$$

thus $\mu^{e q}$ is the Nyquist density.

The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the K-W distance between two measures μ and ν supported in K as

$$
K W(\mu, \nu)=\inf _{\rho} \iint_{K \times K} d(x, y) d \rho(x, y),
$$

where ρ is an admissible measure, i.e. the marginals of ρ are μ and ν respectively.

The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the K-W distance between two measures μ and ν supported in K as

$$
K W(\mu, \nu)=\inf _{\rho} \iint_{K \times K} d(x, y) d \rho(x, y),
$$

where ρ is an admissible measure, i.e. the marginals of ρ are μ and ν respectively. Alternatively:

$$
K W(\mu, \nu)=\inf _{\rho} \iint_{K \times K} d(x, y) d|\rho|(x, y),
$$

where ρ is an admissible complex measure, i.e. the marginals of ρ are μ and ν respectively

The complex transport plan

The K-W distance metrizes the weak-* convergence. We want to prove that

$$
K W\left(b_{n}, \sigma_{n}\right) \rightarrow 0
$$

where $b_{n} \leq K_{n}(x, x) d V(x) / N_{n}$ is smaller than the Bergman measure and

$$
\sigma_{n}=\frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \delta_{\lambda}
$$

The complex transport plan

The K-W distance metrizes the weak-* convergence. We want to prove that

$$
K W\left(b_{n}, \sigma_{n}\right) \rightarrow 0
$$

where $b_{n} \leq K_{n}(x, x) d V(x) / N_{n}$ is smaller than the Bergman measure and

$$
\sigma_{n}=\frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \delta_{\lambda}
$$

The transport plan ρ_{n} that is convenient to estimate is:

$$
\rho_{n}(x, y)=\frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \delta_{\lambda}(y) \times g_{\lambda}(x) \frac{K_{n}(\lambda, x)}{\sqrt{K_{n}(\lambda, \lambda)}} d V(x)
$$

where g_{λ} is the biorthogonal basis to $\left\{\frac{K_{n}(\lambda, x)}{\sqrt{K_{n}(\lambda, \lambda)}}\right\}_{\lambda \in \Lambda_{n}}$ in the space $\mathcal{F}_{n} \subset \mathcal{P}_{n}$ spanned by $\left\{\kappa_{\lambda}, \lambda \in \Lambda_{n}\right\}$

The complex transport plan

The two marginals of ρ_{n} are

- $\nu_{n}:=\frac{1}{N_{n}} \mathcal{K}_{n}(x, x) d V(x) \leq \frac{1}{N_{n}} K_{n}(x, x) d V(x) \stackrel{*}{\rightharpoonup} \mu^{e q}$

The complex transport plan

The two marginals of ρ_{n} are

- $\nu_{n}:=\frac{1}{N_{n}} \mathcal{K}_{n}(x, x) d V(x) \leq \frac{1}{N_{n}} K_{n}(x, x) d V(x) \stackrel{*}{\rightharpoonup} \mu^{e q}$
- $\sigma_{n}:=\frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \delta_{\lambda}$

The complex transport plan

The two marginals of ρ_{n} are

- $\nu_{n}:=\frac{1}{N_{n}} \mathcal{K}_{n}(x, x) d V(x) \leq \frac{1}{N_{n}} K_{n}(x, x) d V(x) \stackrel{*}{\rightharpoonup} \mu^{e q}$
- $\sigma_{n}:=\frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \delta_{\lambda}$
and

$$
K W\left(\nu_{n}, \sigma_{n}\right) \leq \frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \int_{\Omega} d(\lambda, x)\left|g_{\lambda}(x)\right| \frac{\left|K_{n}(\lambda, x)\right|}{\sqrt{K_{n}(\lambda, \lambda)}} d V(x)
$$

The complex transport plan

The two marginals of ρ_{n} are

- $\nu_{n}:=\frac{1}{N_{n}} \mathcal{K}_{n}(x, x) d V(x) \leq \frac{1}{N_{n}} K_{n}(x, x) d V(x) \stackrel{*}{\rightharpoonup} \mu^{\text {eq }}$
- $\sigma_{n}:=\frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \delta_{\lambda}$
and

$$
K W\left(\nu_{n}, \sigma_{n}\right) \leq \frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \int_{\Omega} d(\lambda, x)\left|g_{\lambda}(x)\right| \frac{\left|K_{n}(\lambda, x)\right|}{\sqrt{K_{n}(\lambda, \lambda)}} d V(x)
$$

Thus

$$
K W^{2}\left(\nu_{n}, \sigma_{n}\right) \lesssim \frac{1}{N_{n}} \iint d^{2}(x, y)\left|K_{n}(x, y)\right|^{2} d V(x) d V(y)
$$

An off-diagonal estimate

Given a bounded function f on M we denote by T_{f} be the Toeplitz operator on $\mathcal{P}_{n} \cap L^{2}(\Omega)$ with symbol f, i.e. $T_{f}:=\Pi_{n} \circ f$. where Π_{n} denotes the orthogonal projection from $L^{2}(\Omega)$ to \mathcal{P}_{n}.

An off-diagonal estimate

Given a bounded function f on M we denote by T_{f} be the Toeplitz operator on $\mathcal{P}_{n} \cap L^{2}(\Omega)$ with symbol f, i.e. $T_{f}:=\Pi_{n} \circ f$. where Π_{n} denotes the orthogonal projection from $L^{2}(\Omega)$ to \mathcal{P}_{n}. It can be easily computed:

$$
\operatorname{Tr} T_{f}^{2}-\operatorname{Tr} T_{f^{2}}=\frac{1}{2} \int_{\Omega \times \Omega}(f(x)-f(y))^{2}\left|K_{n}(x, y)\right|^{2} d V(x) d V(y)
$$

An off-diagonal estimate

Given a bounded function f on M we denote by T_{f} be the Toeplitz operator on $\mathcal{P}_{n} \cap L^{2}(\Omega)$ with symbol f, i.e. $T_{f}:=\Pi_{n} \circ f$. where Π_{n} denotes the orthogonal projection from $L^{2}(\Omega)$ to \mathcal{P}_{n}. It can be easily computed:

$$
\operatorname{Tr} T_{f}^{2}-\operatorname{Tr} T_{f^{2}}=\frac{1}{2} \int_{\Omega \times \Omega}(f(x)-f(y))^{2}\left|K_{n}(x, y)\right|^{2} d V(x) d V(y)
$$

Now, setting $f:=x_{i}$ we observe than on $\mathcal{P}_{n-1}, T_{f}(p)=x_{i} p$. Therefore $T_{f^{2}}-T_{f}^{2}=0$ on \mathcal{P}_{n-2}. Therefore:

$$
\operatorname{Tr} T_{f}^{2}-\operatorname{Tr} T_{f^{2}}=O\left(k^{n-1}\right)
$$

and

$$
K W^{2}\left(\nu_{n}, \sigma_{n}\right) \lesssim \frac{1}{n}
$$

Some extensions

There are many extensions of this result. Of special interest: Let M be a compact smooth algebraic variety in \mathbb{R}^{m}. We endow the space of polynomials \mathcal{P}_{n} restricted to M with the L^{2} norm with respect to the Lebesgue measure. We define interpolating sequences Λ as before.

Some extensions

There are many extensions of this result. Of special interest: Let M be a compact smooth algebraic variety in \mathbb{R}^{m}. We endow the space of polynomials \mathcal{P}_{n} restricted to M with the L^{2} norm with respect to the Lebesgue measure. We define interpolating sequences Λ as before.

Theorem

If \wedge is an interpolating sequence for the polynomials then

$$
\limsup _{n \rightarrow \infty} \frac{1}{N_{n}} \sum_{\lambda \in \Lambda_{n}} \delta_{\lambda} \leq \mu^{e q}
$$

The equilibrium measure in this setting is comparable to the Lebesgue measure.

