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Interpolating sequences

Let X be a set and H a reproducing kernel Hilbert space of real
functions defined on X , i.e. for all x ∈ X , there is a Kx ∈ H such
that

f (x) = 〈f ,Kx〉.

We normalize the reproducing kernel and denote
κx = Kx/‖Kx‖.

Definition
A sequence Λ ⊂ X is an interpolating sequence for H whenever∑

λ∈Λ

|cλ|2 ' ‖
∑
λ∈Λ

cλκλ‖2.
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Riesz sequences and Interpolating sequences in PW

Let Λ ⊂ R, then

Definition

A sequence of functions {fλ(z) = sinπ(z−λ)
π(z−λ) }λ∈Λ is a Riesz

sequence for the Paley Wiener space whenever,

∑
λ∈Λ

|cλ|2 .

∣∣∣∣∣∑
λ∈Λ

cλfλ

∣∣∣∣∣
2

.
∑
λ∈Λ

|cλ|2.

This implies that Λ is uniformly separated.



The density of a interpolating sequences

There is a density that almost describes interpolating
sequences

Definition
The upper Beurling-Landau density of a sequence Λ ⊂ R is

D+(Λ) = lim
r→∞

sup
x∈R

#{Λ ∩ (x − r , x + r)}
2r

.

Theorem (Beurling)
A separated sequence Λ ⊂ R is interpolating for PW if
D+(Λ) < 1. Moreover if Λ is interpolating then D+(Λ) ≤ 1.
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Our setting

Let Ω be a smooth bounded strictly convex domain in Rd .

Let Pn be the real polynomials of degree n.
Let dV be the normalized Lebesgue measure restricted to Ω.
We denote by Nn = dim(Pn).
We endow Pn with the norm given by L2(V ).

‖p‖2 =

∫
Ω
|f (x)|2 dV (x).
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Interpolating sequences

Let Λ = {Λn}n ⊂ Ω be a sequence of finite sets of points of
Ω ⊂ Rd .

Definition
We say that Λ is an interpolating sequence if there is a constant
C > 0 such that

C−1
∑
λ∈Λn

|cλ|2 ≤

∣∣∣∣∣∑
λ∈Λ

cλκn
λ

∣∣∣∣∣
2

≤ C
∑
λ∈Λn

|cλ|2,

were κn
λ is the normalized reproducing kernel.

We are interested in the geometric distribution of points in Λ.



Alternative definition

Λ is an interpolating is equivalent to the two following
properties.

∑
λ∈Λn

|p(λ)|2

Kn(λ, λ)
≤ C ‖p‖2 , ∀p ∈ Pn

and for any sequence of sets of values {vλ}λ∈Λv there are
polynomials pn ∈ Pn such that pn(λ) = vλ with

‖pn‖2 ≤ C
∑
λ∈Λn

|vλ|2

Kn(λ, λ)
.



The “natural” normalization

The natural normalization is

cλ,n = sup
p∈Pn, ‖p‖=1

|p(λ)|2.

This can be computed as follows. Take p1, . . . ,pNn an
orthonormal basis of Pn and construct:

Kn(z,w) =
∑

j

pj(z)pj(w),

cλ,n = Kn(λ, λ) ' min

(
nd√
d(λ)

,nd+1

)
.

Moreover Kn is the reproducing kernel:

p(z) =

∫
Ω

Kn(z,w)p(w) dV (w), ∀p ∈ Pn
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Carleson mesures

The Plancherel-Polya sequences are a particular case of
Carleson measures.

Definition
A sequence of measures in Ω, µk is Carleson if there is a
constant C > 0 such that∫

Ω
|p|2 dµk ≤ C‖p‖2, ∀p ∈ Pk .

We have a geometric characterization of Carleson measures.



An anisotropic metric

In the ball there is an anisotpric distance given by

d(x , y) = arccos

{
〈x , y〉+

√
1− |x |2 +

√
1− |y |2

}
.

This is the geodesic distance of the points in the sphere Sd

defined as x ′ = (x ,
√

1− |x |2) and y ′ = (x ,
√

1− |x |2).

If we consider balls B(x , r) in this distance they are comparable
to a box (a product of intervals) which is of size R in the tangent
directions and R2 + R

√
1− |x |2 in the normal direction.
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Geometric characterization

The geometric characterization of the Carleson measures is
the following:

Theorem
Let Ω be a ball. A sequence of measures µn is Carleson if there
is a constant C such that for all points z ∈ Ω

µn(B(z,1/n)) ≤ CV (B(z,1/n)).



Bochner-Riesz type kernels

Proof.
The main ingredient in the proof is the existence of well
localized kernels (the needlets of Petrushev and Xu), i.e.
kernels Ln(x , y) such that for an arbitrary k there is a constant
Ck such that:

|Ln(x , y)| ≤ Ck

√
Kn(x , x)Kn(y , y)

(1 + nd(x , y))k ,

and moreover Ln(x , x) ' Kn(x , x) and Ln ∈ P2n and reproduce
the polynomials of degree n.



The Nyquist density

We try to identify which is the critical density. We will use the
following result:

Theorem (Berman, Boucksom, Witt-Nyström)
If µ is a Bernstein-Markov measure then

Kn(x , x)dµ(x)

Nn

∗
⇀ µeq.

The Bernstein-Markov condition is technical and it is satisfied
when µ = χΩdV . The measure µeq is the equilibrium measure.



The equilibrium potential

Definition

Given a compact K = Ω ⊂ Rd and any z ∈ Cd one defines the
Siciak-Zaharjuta equilibrium potential as

uK (z) = sup
{ log |p(z)|

deg(p)
: sup

K
|p| ≤ 1

}
.

Then the equilibrium measure is defined as the Monge-Ampere
of uK

µeq = (i∂∂̄uK )d .

The equilibrium measure is a positive measure supported on K .
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What does µeq look like?

The measure µeq is a well-known object in pluripotential theory.
In the examples we mentioned before it is well understood.

Theorem (Bedford-Taylor)

If Ω is an open bounded convex set in Rd then

dµeq(x) ' deuc(x , ∂Ω)−1/2dV (x).



Main result

Theorem
If Λ is an interpolating sequence for the polynomials in a
bounded smooth strictly convex domain then

lim sup
n→∞

1
Nn

∑
λ∈Λn

δλ ≤ µeq.

In particular, given any ball B in Ω we have

lim sup
n→∞

#(Λn ∩ B)

Nn
≤ µeq(B),

thus µeq is the Nyquist density.
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The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the K-W distance
between two measures µ and ν supported in K as

KW (µ, ν) = inf
ρ

∫∫
K×K

d(x , y)dρ(x , y),

where ρ is an admissible measure, i.e. the marginals of ρ are µ
and ν respectively.

Alternatively:

KW (µ, ν) = inf
ρ

∫∫
K×K

d(x , y)d |ρ|(x , y),

where ρ is an admissible complex measure, i.e. the marginals
of ρ are µ and ν respectively
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The complex transport plan

The K-W distance metrizes the weak-∗ convergence. We want
to prove that

KW (bn, σn)→ 0,

where bn ≤ Kn(x , x)dV (x)/Nn is smaller than the Bergman
measure and

σn =
1

Nn

∑
λ∈Λn

δλ

The transport plan ρn that is convenient to estimate is:

ρn(x , y) =
1

Nn

∑
λ∈Λn

δλ(y)× gλ(x)
Kn(λ, x)√
Kn(λ, λ)

dV (x),

where gλ is the biorthogonal basis to
{

Kn(λ,x)√
Kn(λ,λ)

}
λ∈Λn

in the

space Fn ⊂ Pn spanned by {κλ, λ ∈ Λn}
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The complex transport plan

The two marginals of ρn are
νn := 1

Nn
Kn(x , x) dV (x) ≤ 1

Nn
Kn(x , x) dV (x)

∗
⇀ µeq

σn := 1
Nn

∑
λ∈Λn

δλ

and

KW (νn, σn) ≤ 1
Nn

∑
λ∈Λn

∫
Ω

d(λ, x)|gλ(x)| |Kn(λ, x)|√
Kn(λ, λ)

dV (x).

Thus

KW 2(νn, σn) .
1

Nn

∫∫
d2(x , y)|Kn(x , y)|2 dV (x) dV (y).
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An off-diagonal estimate

Given a bounded function f on M we denote by Tf be the
Toeplitz operator on Pn ∩ L2(Ω) with symbol f , i.e. Tf := Πn ◦ f ·
where Πn denotes the orthogonal projection from L2(Ω) to Pn.

It
can be easily computed:

Tr T 2
f − Tr Tf 2 =

1
2

∫
Ω×Ω

(f (x)− f (y))2 |Kn(x , y)|2 dV (x)dV (y).

Now, setting f := xi we observe than on Pn−1, Tf (p) = xip.
Therefore Tf 2 − T 2

f = 0 on Pn−2. Therefore:

Tr T 2
f − Tr Tf 2 = O(kn−1)

and
KW 2(νn, σn) .

1
n
.
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Some extensions

There are many extensions of this result. Of special interest:
Let M be a compact smooth algebraic variety in Rm.
We endow the space of polynomials Pn restricted to M with the
L2 norm with respect to the Lebesgue measure. We define
interpolating sequences Λ as before.

Theorem
If Λ is an interpolating sequence for the polynomials then

lim sup
n→∞

1
Nn

∑
λ∈Λn

δλ ≤ µeq.

The equilibrium measure in this setting is comparable to the
Lebesgue measure.
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