Interpolating real polynomials

Joaquim Ortega-Cerda
Universitat de Barcelona, BGSMath
Providence, June 6, 2018

ls@ssll  UNIVERSITAT DE BARCELONA



Interpolating sequences

Let X be a set and H a reproducing kernel Hilbert space of real
functions defined on X, i.e. for all x € X, there is a Kx € H such

that

f(x) = (f, Kx).
We normalize the reproducing kernel and denote
rx = Ki/[|Kxl|-



Interpolating sequences

Let X be a set and H a reproducing kernel Hilbert space of real
functions defined on X, i.e. for all x € X, there is a Kx € H such
that

f(x) = (f, Kx)-

We normalize the reproducing kernel and denote
rx = Ki/[|Kxl|-

Definition
A sequence A C X is an interpolating sequence for H whenever
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Riesz sequences and Interpolating sequences in PW

Let A C R, then

Definition
A sequence of functions {f,(z) = S';ZFZZA)A)}AG,\ is a Riesz

sequence for the Paley Wiener space whenever,
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This implies that A is uniformly separated.



The density of a interpolating sequences

There is a density that almost describes interpolating
sequences

Definition
The upper Beurling-Landau density of a sequence A C R is

oAy #AN(x—r,x+r)}
orin =l e 2r -




The density of a interpolating sequences

There is a density that almost describes interpolating
sequences

Definition
The upper Beurling-Landau density of a sequence A C R is
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Theorem (Beurling)

A separated sequence \ C R is interpolating for PW if
D*(A) < 1. Moreover if A is interpolating then D (A\) < 1.




Let Q be a smooth bounded strictly convex domain in RY.
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Our setting

Let  be a smooth bounded strictly convex domain in RY.
Let P, be the real polynomials of degree n.
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Our setting

Let  be a smooth bounded strictly convex domain in RY.

Let P, be the real polynomials of degree n.

Let dV be the normalized Lebesgue measure restricted to Q.
We denote by N, = dim(Pn).

We endow P, with the norm given by L2(V).

Ip|2 = /Q F(x) 2 dV(x).



Interpolating sequences

Let A = {An}n C Q be a sequence of finite sets of points of

Q Cc RY.

Definition

We say that A is an interpolating sequence if there is a constant
C > 0 such that
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were «Y is the normalized reproducing kernel.

We are interested in the geometric distribution of points in A.




Alternative definition
A is an interpolating is equivalent to the two following
properties.

‘p(ANZ 2
<
Ko(h ) < C|plc, Vp € Pp
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and for any sequence of sets of values {vy}.ea, there are
polynomials p, € Pp such that p,(\) = v, with

v 2
ol < © 3 (65

AEAp



The natural normalization is

C)\,n = sup

PEPn, |Ipll=1
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The “natural” normalization

The natural normalization is

cn=sup [P
PEPn, |IplI=1
This can be computed as follows. Take p1, ..., pn, an

orthonormal basis of P, and construct:

Kn(z, w) ij
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The “natural” normalization

The natural normalization is

cn=sup [P
PEPn, |IplI=1
This can be computed as follows. Take p1, ..., pn, an

orthonormal basis of P, and construct:

Kn(z, w) ij

Can = Kn(A, A\) 2 min n ndtt .
,n n ) d()\)’

Moreover K, is the reproducing kernel:

/anw w)dV(w), Vp € Pp



Carleson mesures

The Plancherel-Polya sequences are a particular case of
Carleson measures.

Definition
A sequence of measures in Q, u is Carleson if there is a
constant C > 0 such that

/Q o2 dux < Cllpl?,  Vp € Pk

We have a geometric characterization of Carleson measures.



An anisotropic metric

In the ball there is an anisotpric distance given by

d(x,y) :arccos{<x,y> /1 x4 /1 - |y|2}.

This is the geodesic distance of the points in the sphere S¢

defined as x’ = (x, /1 — |x[?) and y’ = (x,y/1 — |x|?).



An anisotropic metric

In the ball there is an anisotpric distance given by

d(x,y) :arccos{<x,y> /1 x4 /1 - |y|2}.

This is the geodesic distance of the points in the sphere S¢
defined as x’ = (x, /1 — |x[?) and y’ = (x,y/1 — |x|?).

If we consider balls B(x, r) in this distance they are comparable
to a box (a product of intervals) which is of size R in the tangent
directions and R? + Ry/1 — |x|2 in the normal direction.



Geometric characterization

The geometric characterization of the Carleson measures is
the following:

Theorem

Let Q2 be a ball. A sequence of measures i, is Carleson if there
is a constant C such that for all points z € Q

un(B(2,1/m)) < CV(B(z,1/n)).



Bochner-Riesz type kernels

Proof.

The main ingredient in the proof is the existence of well
localized kernels (the needlets of Petrushev and Xu), i.e.
kernels Ly(x, y) such that for an arbitrary k there is a constant
Cy such that:

\/Kn(X>X)Kn(yay)
(1 +nd(x,y))k ’

ILn(x, y)| < Ci

and moreover L,(x, x) ~ Kn(x, x) and L, € P>, and reproduce

the polynomials of degree n.
]



The Nyquist density

We try to identify which is the critical density. We will use the
following result:

Theorem (Berman, Boucksom, Witt-Nystrom)

If u is a Bernstein-Markov measure then

Kn(x, x)du(x) «

eq
N, .

The Bernstein-Markov condition is technical and it is satisfied
when p = xqdV. The measure 19 is the equilibrium measure.



The equilibrium potential

Definition
Given a compact K = Q ¢ RY and any z € C one defines the
Siciak-Zaharjuta equilibrium potential as

u(2) = sup{"’dge'gp((:))’ suplpl < 1},




The equilibrium potential

Definition
Given a compact K = Q ¢ RY and any z € C one defines the
Siciak-Zaharjuta equilibrium potential as

log |p(2)|
= —_— <153,
uk(2) Sup{ de(p) S;p\/o\ < }
Then the equilibrium measure is defined as the Monge-Ampere

of Uk _
189 = (i8duy)?.

The equilibrium measure is a positive measure supported on K.




What does 1.°9 look like?

The measure ¢9 is a well-known object in pluripotential theory.
In the examples we mentioned before it is well understood.

Theorem (Bedford-Taylor)

If Q is an open bounded convex set in RY then

dp9(x) ~ deuc(X, 8Q)~1/2dV/(x).




Main result

Theorem

If \ is an interpolating sequence for the polynomials in a
bounded smooth strictly convex domain then

I|msupN Z oy < pd
n
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Main result

Theorem

If \ is an interpolating sequence for the polynomials in a
bounded smooth strictly convex domain then

I|msupN Z oy < pd
n
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In particular, given any ball B in 2 we have

n—oo Nn o

n(B),

thus 1.9 is the Nyquist density.



The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the K-W distance
between two measures p and v supported in K as

KW (u,v) = inf / /K XKd(X,y)dp(X,y),

where p is an admissible measure, i.e. the marginals of p are
and v respectively.



The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the K-W distance
between two measures p and v supported in K as

KW (u,v) = inf / /K XKd(X,y)dp(X,y),

where p is an admissible measure, i.e. the marginals of p are
and v respectively. Alternatively:

KW(uv) = inf [ dlxy)dlpitx.y),

where p is an admissible complex measure, i.e. the marginals
of p are p and v respectively



The complex transport plan

The K-W distance metrizes the weak-+ convergence. We want
to prove that
l’(W(bn7 Un) — 07

where b, < Ku(x, x)dV(x)/Ny is smaller than the Bergman

measure and ]
Un = — Z 5)\
Nn
AEAn



The complex transport plan

The K-W distance metrizes the weak-+ convergence. We want
to prove that
l’(W(bn7 Un) — 07

where b, < Ku(x, x)dV(x)/Ny is smaller than the Bergman
measure and
_ Z Sy

)\E/\n

The transport plan p, that is convenient to estimate is:

Kn(A, x
o 3 0 < 90022 ),
)\G/\n Kn(A’A)

where g, is the biorthogonal basis to { Kn
space F, C Pnspanned by {xx, A € Ap}



The complex transport plan

The two marginals of p, are
® vy = n-Kn(x, x) dV(x) < §-Kn(x, x) dV(x) = p&
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The complex transport plan

The two marginals of p, are
® vy = n-Kn(x, x) dV(x) < §-Kn(x, x) dV(x) = p&

1
o Un _an)\e/\n(s)‘
and



The complex transport plan

The two marginals of p, are
® vy = n-Kn(x, x) dV(x) < §-Kn(x, x) dV(x) = p&

1
o Un — an)\e/\n (S)\

and
KW (vp,on) < - Z / d(r x)lgr (x)] K2 ((Axi‘) dV(x)
" \eMn ’
Thus

KW2(0n,00) S 77 / o2(x, y) | Ka(x, )2 AV(x) AV (y).



An off-diagonal estimate

Given a bounded function f on M we denote by T; be the
Toeplitz operator on P, N L2(Q) with symbol £, i.e. Tf :=M,o f-
where I, denotes the orthogonal projection from L?(Q) to Pp.
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An off-diagonal estimate

Given a bounded function f on M we denote by T; be the
Toeplitz operator on P, N L2(Q) with symbol £, i.e. Tf :=M,o f-
where I, denotes the orthogonal projection from L?(Q) to Pp. It
can be easily computed:

TTE = TeTa =5 [ (100~ ()2 [Knlx, )2 V0V ).

Now, setting f := x; we observe than on P,_1, T¢(p) = Xx;p.
Therefore T, — T? = 0 on Pp,_,. Therefore:

TrT? — Tr T = O(k™ 1)
and

1

KW2(up, o) < "



Some extensions

There are many extensions of this result. Of special interest:
Let M be a compact smooth algebraic variety in R,

We endow the space of polynomials P, restricted to M with the
L2 norm with respect to the Lebesgue measure. We define
interpolating sequences A as before.



Some extensions

There are many extensions of this result. Of special interest:
Let M be a compact smooth algebraic variety in R,

We endow the space of polynomials P, restricted to M with the
L2 norm with respect to the Lebesgue measure. We define
interpolating sequences A as before.

Theorem
If A\ is an interpolating sequence for the polynomials then

I|msupN Z oy < u®
n
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The equilibrium measure in this setting is comparable to the
Lebesgue measure.



